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In Situ Instrumentation

Enabling the planetary science community to be ready
for Flagship Astrobiology missions of the next decade
– Mars Astrobiology Field Laboratory

– Europa Pathfinder Lander

– Titan Organic Explorer

Prepare the capabilities for New Frontiers missions (e.g.
Venus, comet sample return, deep probes) and
Discovery missions
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In Situ Sample Analysis is where remote sensing instrumentation

was in the 1970’s

Space In Situ Instrumentation still in
its Infancy

Remote sensing has been operational for decades

Viking was first planetary mission to use in situ instruments in 1976.
Hiatus of 21 years before Pathfinder in 1997

Dearth of instrumentation was remedied somewhat by PIDDP, MIDP,
ASTID and ASTEP

In situ analysis complicated because answering specific science
questions requires specific technologies suited to specific extreme
environment

Instrumentation may be based on photon sources, electron sources,
mass spectrometry, wet chemical techniques, etc.

Process to develop in situ instrumentation is long, complicated and
requires high degree of system architecting and engineering

Testing must be done in the field and on the mission platform as well
as in the expected environment

Must look at end-to-end instrumentation, including sample acquisition
and handling, sample preparation, IT, control etc.



National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology

June 29, 2006 ESTC - 2006 Page 5

Planetary Extremes
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Planetary Extremes
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Mars Surface Environment
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Max total insolation = 593 W/m^2 

Max diffuse insolation = 90 W/m^2 

Max direct insolation = 503 W/m^2 

Driven by landing site latitude (10oN to 15oS), time of year (LS = 328 at BOM,

LS = 30 at EOM ), ground albedo (0.12 to 0.25) and inertia (rock distribution),

dust level (Tau =  0.2) in atmosphere & elevation (-1.3km, MOLA)

Global Circulation Model predicts ground, atmosphere & sky temps, solar

insolation during day

Wind speeds from Viking data (0 to 20 m/sec)
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Lunar Precursor Mission
Environment

Analyze a large scale Lunar survey/assay mission in the permanently dark

S. Polar Cap craters:

Key environmental drivers include:
– 40K temperature in shadowed areas is challenge for any type of

   actuation/thermal control;

– While surface rock population is not  significant, crater impact

    frequency is extremely large and represents major hazard to

    landing/mobility systems;

– 1/6g gravity has impact on surface system stability;

– Radiant heating in lit areas can cause huge temperature deltas

   in structures/components;

– Lunar dust mostly sil ica which exhibits properties similar to

             splintered glass;

– Lunar vacuum coupled with temp extremes rqrs unique

   approach to selection of actuators (brushless) and

   lubricant;

Likely target- Shackleton Crater @

90deg S. Polar Cap
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Smooth, mantled

surface with

fractures: are the

properties of

Europa’s regolith

similar to those of

compacted snow?
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Europa Surface Analogue

Europa’s surface:
Is it fluffy?
Is it crunchy?
Is it bare solid ice?

Answer:
a. All of the above
b. We don’t really know.

Our lander must
be able to survive
no matter what
the correct answer
turns out to be.
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Other Parameters

Temperatures:  Daytime ~ 130 K

nighttime ~ 80 K

Ambient Radiation:  ~ 20 Rad /sec

Atmosphere: Negligible

Rotation Period: 3.55 Earth days

Radius: 1565 km

Surface Gravity: ~1.3 m / sec 2 (82% of Lunar g)



National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology

June 29, 2006 ESTC - 2006 Page 12

Life Cycles of Remote Sensing compared to In Situ
Instrumentation:
Remote Sensing
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Life Cycles of Remote Sensing compared to In Situ
Instrumentation:In Situ
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Needed Capabilities For In Situ
Science

Astrobiology science definitions and investigations

In situ instrument concept, research, and

development

Access methods and sample collection / handling /

processing techniques

Planetary protection methodology
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The Wild World of Astrobiology

Astrobiology and In Situ Exploration is a contact sport!

Researchers have been “spanning the globe” in pursuit of answering

key scientific and technical questions
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Timeline

Long timeline for creation of in situ investigations

for NASA planetary missions
– Establish in situ / astrobiology science community

• Geology community has come a long way

• Biology community lagging

– Creation of accepted definitions and methods of in situ investigations

needed

• Lack of models of performance, calibration, ands system engineering

practices

For Flagship Missions in the 2015 – 2020 Time Frame,

 Science Team and Instrument Development is NOW
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Example: MOD

Mars Organic Detector (MOD) aka UREY

– System to detect and analyze organic compounds in the Martian

Environment with high sensitivity and specificity

Collaboration with JPL (Frank Grunthaner), UCSD (Jeff Bada), and

Richard Mathies (UCB)

– Working together over nine years

– Collaboration has used funding from ASTID, ASTEP (2), PIDDP,

MSMT, RTD, AEMC, Grand Challenge

All leading to proposal for UREY payload on EXOMARS

– Selected by ESA, now looking for selection as a Mission of

Opportunity

All this for ONE instrument
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Micro

Biology

Micro

Electronics
Micro

Fabrication

Micro column separator
(Purdue)

500-nm micro wells on tip of fiber
probe with chemical sensor beads
(Tufts)

Micro fluidic system
(Caliper, Inc.)

• Advanced micro scale sample handling &
preparation technologies

• Advanced sensor concepts, including biologically inspired

• Micro fabrication of traditional analytical tools

• Advanced transducer concepts

• Micro fabrication of supporting technologies
such as pumps

• Replenish/recycle expendables using in situ resources
• Integration

In Situ Sample Analysis Requires
Integration of Many Emerging

Advanced Concepts
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Supporting technologies for In Situ
Laboratories

Microfluidic technologies

Miniature vacuum pumps

Visible, IR and UV Sensors

Advanced miniature fabrication technologies
– Micro-machining

Advanced Photonics development – lasers

Advanced diffractive optics

 Sample acquisition and handling
– Acoustic coring

– Drilling (rock and ice)
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Fluidics for sample

preparation

Solid-state ion-

specific electrodes

TDL-based

micro Raman

Force-detection

NMR

LAB-BENCH

PROCEDURES

Reagent preparation

Solution  metering

Mixing

Filtering

Concentrating

Heating, cooling

Washing

Storage

Miniature

mass

spectroscopy

Other emerging

analytical tools

CE

Electronics
Hub

Micro-laboratory example
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In Situ Instrument Classes

Distance of operation:
– “Local Remote”: meters to cm range working range

– “Contact”: cm to micron working range

– “Analytical”: Sample acquired, processed, and analyzed inside of

laboratory

–  The first two categories require little to no sample or surface

preparation - a major advantage for rapid assay operations, mass-

limited platforms, or for triage in selection of samples for further study or

collection

–Contact Instrument Examples include

•Microscopy

•Raman (Visible, UV, IR; wide area or microbeam)

•Electron Probe, Alpha probe

•LIBS

•Reflectance optical spectroscopy (UV, visible, IR, polarization)

•Magnetic resonance

•Neutron Spectroscopy
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In Situ Instrument Classes

Measurement Types
– Detection/Classification/Identification of Chemical/Elemental species

• Mass spectroscopies

• Chromatography systems

• X-ray diffraction / Florescence

• Optical Spectroscopies (Absorption, Raman, Luminescence, etc)

• Nuclear Magnetic Resonance

• Almost every other currently available chemical assay is under some stage of
development

– Biological Detection / Identification

• ATP and QD tagging

• DPA detection

– Spatial Detection Methods

• Optical Microscopy

• CT X-ray imaging

• Soft X-ray Photoemissions
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Key for Analytical Instrument:
Sample Preparation

Analytical in situ instruments rely on acquiring and preparing a
sample

Necessity to develop sample preparation and extraction
techniques that
– Offer high efficiency

– Do NOT bias the measurements to be taken with downstream instruments

– Offer robust operation - often the limiting factor in lifetime

– Avoid cross contamination

– Provide Multiple samples/extracts to instrument suite

– Operate in reduced gravity conditions

Techniques
– Pyrolysis

– Sublimation

– Polishing

– Supercritical CO2 extraction

– Subcritical H20 extraction

– Microwave extraction
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Summary

In Situ instruments are a unique for NASA missions -
lessons from remote sensing often don’t apply

Development of In Situ System Engineering
methods is a work in progress

Defining, integrating and testing of space in situ
laboratories is currently more art than engineering

The power of in situ methods, demonstrated in the
lab, is advancing rapidly, offering measurements
and science investigations not thought possible


